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Abstract 

A chirp transform is defined for the A-slep LMS 
adaptive predictors for linearly chirped signals 
embedded in additive white Gaussian noise, liy 
converting the chirped signals to stationary baseband 
signals, this transform provides a different approach in 
analyzing the tracking performance of the LMS adaptive 
predictors. This transform also provides an approach of 
analyzing the nonlinear effects of the LMS adaptive 
predictor for nonstationary input signals. It is also 
shown that the chirp transform can he applied to the I- 
step RLSpredictor with chirped input signals. 

1. Introduction 

The tracking behavior of adaptive filtering algorithms 
is a fundamental issue in defining their performance in 
nonstationary operating environments. The convergence 
behavior of an adaptive filter is a transient phenomenon 
whereas the tracking behavior is a steady-state 
property!' I- |2| studied one-step Least-Mean-Square 
(LMS) adaptive predictor when the input signal consists 
of a chirped sinusoid in Additive White Gaussian Noise 
(AW(iN). In |3| the performance of the one-step LMS 
predictor is analyzed when the input is a chirped first 
order Autoregressive process (ARI) embedded in 
AWCiN. 

traditional analysis of the LMS adaptive filter 
performance, including the analysis in the above 
references, is restricted to a statistical analysis of the 
algorithm under a set of independence assumptions that 
ignore the statistical dependence among successive tap- 
input vectors |4|. The Mean-Squared Error (MSIZ) of the 

' This work was supported by the NSF Induslry/Universily 
Cooperative Research Center on Ultra-High Speed Integrated Circuits 
and Systems (ICAS) at the University of California, San Diego. 

LMS adaptive filter using these assumptions is bounded 
by that of the corresponding finite-length Wiener (liter. 
These well-known assumptions mask the nonlinear 
effects that arise in LMS adaptive fillers. It has been 
shown that it is possible for the LMS adaptive filter to 
outperform the finite-length Wiener filter in MSF. for the 
cases of adaptive noise cancellation [5], adaptive 
channel equalization [6], and adaptive prediction [7J[8|. 
An error transfer function approach is also derived in [6] 
to give an approximate expression for the total steady- 
state MSE of the LMS adaptive channel equalizer. A 
chirp transform is defined in f71|8] to convert the 
chirped ARI signal to stationary signal and approximate 
the steady-state MSE of the LMS algorithms in the 
transformed domain. 

In this paper, we show that the chirp transform defined 
in |7||8| can be applied to multiple-step LMS predictors 
with linearly chirped signal, where the original signal 
can be an arbitrary signal, not necessarily ARI process. 
The chirp transform will convert the linearly chirped 
signal to its original form, and the analysis of steady- 
state MSE can be done on stationary signals. The chirp 
transform can also be used to the exponentially weighted 
Recursive-Least-Square (RLS) algorithm. 

2. Background 

The adaptive predictor application considered is the 
adaptive recovery of narrowband signals from embedded 
AWCiN. Fig. 1 represents the linear A-step adaptive 
predictor structure to be analyzed, where 

wT«) = [»'| w\ ••• w°M |' are the adaptive filter 

weights; xc
n is the input to the adaptive predictor, 

xc
n =sc

n +nn,n = 0,1,2,...; and s° has initial center 

frequency (0„ and chirp rate !//. .?,', is the linearly 

chirped signal from the stationary baseband signal  s„, 
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sc _ Q»T 2 ^ _    „ _ 0,1,2,...,   where       Q = eJ'°",   and 

M' = e» . 

The weight update equation of the LMS algorithm is 

w'(/i + l) = wc(n)+nxc'(n)ec
n, (1) 

where // is the step-size parameter of the adaptive 

algorithm, xc(n) is the adaptive (liter input lap-vector at 

time index /;, and * denote the complex conjugate. For 

the A-step predictor, 

•w'"'(/7 + l)x"(w+l). (4) 

X»: 

The error update equation is given by 

eUi ~XU\ -w'7'(« + l)xc(« + l). 

(2) 

(3) 

3. Chirp Transform for LMS Predictor 

The error transfer function approach derived in [6] 
provides a method to approximate the total steady-state 
MSE of the I.MS adaptive ("liter without explicitly 
invoking the independence assumptions for wide-sense 
stationary input signals, i.e., signals with a fixed PSD. 

For a chirped input signal x°, the PSD is constantly 

shifting with time, and this approach is not directly 
applicable. However, by multiplying the chirped input 
signal by a negative frequency offset sequence, we can 

transform the chirped signal sc„ to its stationary 

baseband form   .v„  and leave the noise component  nn 

unchanged in statistics since AWGN has a constant 
spectral envelope across all frequencies. In the 
following, it is shown that the above transform will not 
change the MSE of the I,MS adaptive predictor for a 
chirped input signal. This allows the error transfer 
function approach to be applied to rotated I.MS 
algorithm with the transformed input signals in order to 
approximate the MSE of the standard I.MS adaptive 
predictor with chirped input signals. 

<«+!>' 

3.1    Equivalence of MSEs 

Multiplying    (3)    by    Q-<"+'>*H"i"    >    and    defining 
a 

e"n =Q "MrT< , n = 0,1,2,... (3) becomes 

where w"(/i + l)  is the corresponding predictor weight 

in     the     transformed     domain     and      x"(«+l)      is 

corresponding unchirped stationary input signal vector. 

Note   that    for   the   unchirped   signal    x"=sn+n", 
i 

«;; =Q""T 2 nn,  H = 0,1,2,... X   and   n„   arc AWGN 

with the same statistics. (I) becomes 

w"(« + l) = VA'[w"(w) + Mx"*(»K],      (5) 

VA =M'A l*diagi,l",M'2,---,M"1'! (6) 

where 

is the chirp rotation matrix. Since eH„  is the transformed 

version of ec
n, they have the same power, i.e., 

/•lk;| i=£[|n-"4'"2e;f]=£[Ki2] (7) 

Consequently, the MSH of the I.MS adaptive predictor 

with a chirped input signal xc
n is equal to the MSE of a 

different LMS adaptive predictor with a corresponding 

stationary baseband input signal v". The two adaptive 

predictors have the same length   M   and step-size  // . 

Equations (-1) and (5) define the error and weight vector 
updates of the rotated LMS adaptive predictor. The only 
difference between these equations and the standard 
LMS adaptive predictor for stationary input signals as in 
(I) and (3) is that the weight vector is rotated in 
frequency by the chirp matrix \\ after each normal 

LMS update, as shown in Fig. 2. 

3.2   Error   Transfer   Function   Approach   for   the 
Rotated LMS Adaptive Predictor 

Decompose the rotated LMS adaptive predictor 
weight into the sum of a time-invariant finite-length 
Wiener predictor weight and a time-varying 
misadjustment component 

w"C)= w„ + w"„vO;). 

wl, (") 's further decomposed as 

w';m(;j) = w';„((;7) + w;;iM.(rt), 

IN) 

(9) 

where     w^f/i) = £[w'^,(/i)]     is    the    mean    weight 

misadjustment corresponding to the weight fluctuation 
caused by weight rotation. From (5), the mean weight 
misadjustment is given by 



<„.(/, +1) = v;(i - //R)w;;„,(») -(i- v; )Wo, (io) 

where R is the autocorrelation matrix of the stationary 
input signal. When n —» °°, i.e., the adaptive filter 
reaches steady state, 

<„ = wHM = -(A + /iR)_l Aw„,        (II) 

where A = VA-I. Note that in (10), it is assumed 

wV (/?) to he independent of x"'(n)\"' (n), and it is not 

necessary for W^,(/J) to he independent of \"(n). This 

steady-state mean weight misadjustment term 
corresponds to the lag weight misadjustment of the I.MS 
adaptive predictor with a chirped input process as shown 
in |31. 

The weight update equation (5) can be written as 

w"(n) = v:V(0) + ^Xv;Mlx",(;>; .   (12) 

At steady state, V*"\v"(0) can be replaced with 

W0 + w'L,, thus the error process e"n satisfies the 

recursive difference equation 

(.;;+/(g('';x""(./)y;("-"x"(«) 

= x-;;-[w,) + w,:„ \r\"(n) 

Using the approximation |6| 

x""0)x"(«)«Mr;(«-7), 

and 

l\ -»F     'I, \\i« 1 

(13) 

(14) 

(15) 

where   r"(k)   is  the  autocorrelation  of the stationary 

input signal x", we have. 

'(y)V;(" nx"(n)~Mr°(n-j), df') 

where 

r'Jn -j) 
4        (A/'^K,-/) 
= «P        2 '•,"(«-./). (17) 

Equation (13) can thus be approximated by a standard 
difference equation with constant coefficients as 

»-i 

e„" + // M]T/•; (/i -./)< = < -1 w„ + <„ f x" (n).(1 8) 
j-« 

We can interpret the steady-slate («—><*>) rotated LMS 

adaptive predictor error e"n as the output of a time- 

invariant  linear  system   with  transfer  function   H{z) 

driven   by   the   wide-sense   stationary   error   process 
x" -two +wl„] x"(«), where H(z) is given by 

lf(z) •• 
1 

\+fiMR(z) 

where 

/?(z) = £/•>,); 

(19) 

(20) 

The steady-state MSL of the rotated LMS adaptive 
predictor is thus 

•/*. = ~^-A , ,1 H{s) |2 |l - w„(r) - w:„.(.-)|2 Slis)—, 

A/ + A-I A/+A-I 

where \Va{z)=   £  w0jZ'
J , HC,(r) =   X  <*.,"'   are 

the transfer functions of the finite-length Wiener predictor 
and mean weight misadjustment of the rotated I.MS 

adaptive predictor respectively. S"x(z) is the PSD of the 

stationary input process x"n. 

The error transfer function approach can also be 
applied to the Normalized LMS (NLMS) algorithm as 
defined below [6] 

w'(n I I) = Win) + _-JL_X"(/JK (22) 
ii * («)ir 

with 

I HZ)- 
itni((z)i(i\ i /;,) 

(23) 

4. Chirp Transform tor RLS Predictor 

In this section, only the I-step RLS predictor is 
studied due to the difficulty involved in the inversion of 
the autocorrelation matrix estimate. The weight and error 
update equations of the exponentially weighted RLS 
adaptive algorithm is given by [4] and (3) 

w'(;; + l) = w'(/0 + l(I>';(»)r'x'"(«)t';,,    (24) 

where   <!>'(«) = ^A" V'(/7)x''(«)   is the input signal 
1-0 

autocorrelation matrix estimate at time n, and A is the 
forgetting factor of the RLS algorithm. 

In order to relate the inverse of autocorrelation 

estimations [0£(«)]H of chirped process in (24) to the 

autocorrelation   estimate    [<!>„(«)]"'    of   the   baseband 



stationary process x" = sn + n", use steady-state 

approximation [cp^1 (n)]"'= (1 - A)R~', and define a 

signal direction matrix 

D = diag(0 VF"2,n2T""f,...,nA,lP ~2 }      (25) 

Then at steady-state, 

[<!)',(«)]"' = V""D |<i>»r' D"V'("'" (26) 

where V = VA |A=1. (24) becomes 

w"(« 4-1) = w'(«) +V+lD[0, («)]"' DV^'VO?)^ 

ll can be simplified to 

w" (« + l) = V*[w"(«) + V[0, («)]"'V'x"*(«)e„"]     (27) 

The MSE of RLS on chirped process x° can be 

approximated by the MSE of RLS on a correspondence 

stationary baseband process x„ with an adaptive filter of 

the same length M, forgetting factor A. The 
differences of equations (4) and (27) with the standard 
RLS algorithm for stationary signal (3) and (24) is that 
the weight vector is rotated by chirp matrix V" after 

each update and the inverse of autocorrelation matrix 

estimation is pre-rotated by V and post-rotated by V* in 

each update. The rotations will give extra MSP. in excess 
of the normal MSE of standard RLS algorithms. 

5. Simulations 

Several simulations have been performed to show the 
equivalence of MSRs using chirp transform for A-step 
LMS predictor and I-step RLS predictor using the 
chirped AR1 signals, and the transfer function approach 
in approximating the MSK of the LMS predictor with 
chirped AR1 signals. 

Fig. 3 is a plot of MSEs of Wiener predictor, standard 
LMS with chirped AR1 input signal, and rotated LMS 
with corresponding stationary input signal. The signal is 
pole location is at a = 0.9 , input signal SNR=5dB, filter 
length M =10, the prediction distance is 5, the chirp 
rate is i// = 5e-4. It shows from the Fig. that the MSEs 

are essentially the same for standard LMS on chirped 
input signal and rotated LMS on stationary input signal. 

Fig. 4 plots MSEs of 40-step NLMS predictors as a 
function of adaptation constant, with SNR = 20dB, 
M=25, a = 0.99, chirp rate \\i = 5ne - 4 . In this plot, the 

NLMS adaptive predictors are used instead of the 
standard LMS adaptive predictors because the NLMS 
algorithm  is stable  for relatively larger values of the 

adaptive filter stcp-si/e ( 0 <//< 2 ) |6], where the 

nonlinear effects of adaptive algorithm are most 
significant. The most significant feature of the plot is 
that the LMS predictors can have smaller MSEs than 
those of the finite-length Wiener predictor. This is due to 
the fact that adaptive filters are nonlinear filters. The 
results from transfer function approach fit well to the 
simulation results at the region where the nonlinear 
effects are most significant. The discrepancy of the 
MSEs predicted by transfer function approach with 
simulation results at smaller adaptive filter step-si/e is 
caused by approximations used in (15), where the 
frequency of the input signal vector is approximated by 
that oflhe center element in that vector. 

Fig. 5 plots MSEs of Wiener predictor, standard RLS 
with chirped ARI input signal, and rotated RLS with 
stationary input signal. The signal pole location is at 
a = 0.9 , filter length M =10, the prediction distance is 
I, chirp rale is i// = 5e-4. It can be seen from the plot 

that the MSEs of standard RLS on chirped input signal 
are very close to the MSE.s of rotated LMS on stationary 
input signal. 

6. Conclusions 

A transform is defined to convert the chirped input 
signals to baseband stationary input signals, thus 
provides a different approach in analyzing the tracking 
performance of the LMS adaptive predictors. This 
transform makes it possible to apply the error transfer 
function approach to chirped input signals and compute 
the total steady-state MSE of the LMS adaptive 
predictors. It shows that for narrowband input signals, 
whether stationary or nonslalionary, embedded in 
AWGN, the LMS adaptive predictor may outperform the 
finite-length Wiener predictor in steady-state MSI-;. The 
same chirp transform can he applied to the l-stp 
exponentially weighted RLS predictor with chirped 
input signals. 
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Figure I. LMS/RLS A-step predictor structure. 
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Figure 3. MSRs of Wiener predictor, standard LMS with 
chirped AR1 input signal, and rotated LMS with 
stationary input signal. The signal pole location is at 
o = 0.9, filter length M =10, the prediction distance is 
5, chirp rate is \jf - 5e - 4. 
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Figure 4. MSF.s of 40-stcp NLMS predictors as a 
function of adaptation constant, with SNR = 20dB, 
M=25, a = 0.99, chirp rate y = 5>ne-4 . 
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Figure 2. Rotated LMS A-step predictor structure. 

Figure 5. MSEs of Wiener predictor, standard RLS with 
chirped AR1 input signal, and rotated RLS with 
stationary input signal. The signal pole location is at 
a = 0.9 , filter length M = 10, the prediction distance is 
1, chirp rate is if/ = 5c -4. 


